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Abstract

The use of quantitative structure property relationships (QSPRs) is proposed for the
calculation of dielectric constants. A data set of 497 compounds with a wide variety of
functional groups is assembled. These compounds span the dielectric constant range of 1-40.
A total of 65 molecular descriptors is calculated for these compounds. These descriptors include
the dipole moment, polarizability, counts of elemental types, an indicator of hydrogen bonding
capability, charged partial surface area descriptors, and molecular connectivity descriptors.
Subsets of these descriptors are used to build models in an attempt to find the best possible
correlation between chemical structure and dielectric constant. A total of 70,000 models is
examined. Neural networks using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) training
algorithm are employed to build the models. A total of 191 models has test set errors less than
2.0 and training set errors less than 3.0, where the errors are calculated as the mean of the
absolute values of the residuals for sets of 97 and 350 compounds, respectively.
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1. Introduction

The dielectric constant, or relative permittivity, is an important fundamental molecular property
that can be a useful predictor of the behavior of substances on a macroscopic scale. The primary
importance of the dielectric constant lies in the fact that it is a measure of the ability of a substance
to maintain a charge separation. Dielectric constants can be measured experimentally through the

use of a capacitance cell according to the following equation:
C=¢C,, 1)

where C, is the capacitance of the cell under vacuum, C is the capacitance of the cell when filled
with the dielectric medium, and € is the dielectric constant. Since the charge on the plates of the
capacitance cell does not change, the net effect of the presence of the dielectric material is to reduce

the effective electric field across the plates:
E=E,, @

where E, is the electric field strength under vacuum and E is the net electric field strength when the

dielectric medium is present.

The dielectric constant is particularly important for the interpretation of certain solvent-solute
behavior. Solvents can be divided into two general classes: polar and nonpolar. Solvents with
dielectric constants less than about 15 are considered to be nonpolar [1]. The reduction of net
electric field strength within high dielectric media (see equation [2]) also applies to point charges.
It is well known that the high solubilities exhibited by ionic salts in polar solvents are due to
reduction of the electrostatic forces between oppositely charged salt ions. The large dielectric
constant of a polar solvent effectively shields the ions from each other. The lower dielectric
constants of nonpolar solvents do not provide sufficient reduction in the effective electrostatic forces

to stabilize the separated ions in solution. In this case, the ions remain highly associated as



low-solubility solid-phase salts. Solvent polarity is also known to play a role in the processing of
ionomers, particularly with regard to melt viscosity behavior [2]. The solvation properties of
supercritical water have received much attention over the past several decades. Measurements of
the dielectric constant of water over a wide range of temperatures and pressures indicate that water
behaves as a polar solvent (€ > 80) at ambient conditions and also as a nonpolar solvent (€ < 10) in
its supercritical state [3, 4]. Salts that are soluble in water at ambient conditions become highly
associated and precipitate out of solution under supercritical conditions [5]. It is also believed that
the solvent dielectric constant plays a significant, although less predictable, role in the solubility of
many highly polar covalent compounds, especially those with large variations in surface charge

distribution.

Unfortunately, dielectric constant values are not always readily available in the literature. Early
calculational efforts were based on Debye’s dielectric theory. Expressions such as the
Clausius-Mosotti equation are generally only useful for dilute gases and some liquids of limited

polarity. A significant improvement is made through the use of the Onsager equation:

©)

[e-n? )(28+n2)= 4nNp® |
(»:(n2 -i-2)z kT

where n is the refractive index, N is the number of atoms in a unit volume, p is the dipole moment,
k is Boltzmann’s constant, and T is temperature. While the Onsager equation works reasonably well,
even for some polar liquids, it does not sufficiently take into account intermolecular interactions and
is especially poor with strong hydrogen-bonding liquids, such as water or alcohols. The limitations
of equation (3) have been verified by calculating dielectric constants for a group of hydrocarbons and
a group of compounds that exert strong intermolecular attractions. The calculated values for the
group of hydrocarbons agree very well with experimental values from the literature, but the
calculated values for the second group of compounds display very poor agreement with the literature.
Computational efforts involving computer simulation and molecular dynamics are also limited for

hydrogen-bonding solvents, due to the sensitivity of the dielectric constant on long-range



intermolecular interactions [6]. The current state of theoretical approaches simply does not allow
their use as general purpose tools for calculating dielectric constants for a wide variety of

compounds.

A solution to this problem is the use of quantitative structure property relationships (QSPRs).
A QSPR is essentially a calibration model in which the independent variables are molecular
descriptors that describe the structure of the molecules and the dependent variable is the property of
interest. The development of a QSPR depends upon the availability of a set of compounds (the
calibration set) for which the value of the property of interest for each is known and the necessary
molecular descriptors can be calculated. Given a QSPR, property values can be predicted for

compounds that are not present in the calibration set.

The roots of QSPR/quantitative structure activity relationships (QSARs) date back to the 1800s,
but the key paper that instigated the current flurry of activity was published in 1962 by Hansch et al.
[7]. In its broadest definition, a QSAR/QSPR is an attempt to correlate chemical structure with
activity or property. An article by Tute [8] gives an excellent history and a good introduction to
QSARs. The literature is filled with QSARs for biological activities related to medicine and
environmental studies, as well as QSPRs related to a wide variety of physical and chemical
properties. An area of much debate has been the way in which the chemical structure is encoded.
This debate has resulted in two differing approaches to the field of QSAR. The Hansch method,
which was the first approach, uses experimental parameters to represent the chemical structure [9].
These parameters encode the hydrophobic, electronic, and steric forces of a molecule and thus yield
models that give an intuitive explanation of the effect of each parameter in the model. The most
famous of these parameters is the octanol/water partition coefficient, which represents the
hydrophobicity/hydrophilicity of a molecule. One disadvantage of this approach is that data must
either be available or be obtained by experiments for every member of the calibration set. This
disadvantage has been addressed by the development of programs that can calculate approximations
to the experimental parameters [10]. Another major limitation of the Hansch approach is that the

molecules used to build the model must have the same basic backbone structure with varying




substituents (i.e., must be congeneric). An oft-cited advantage to the Hansch approach is the fact
that, by always using the same small set of descriptors, the models that are generated can be easily

compared to one another.

The second approach to the development of QSPRs allows a wide variety of descriptors that is
directly calculated from the chemical structure. It is this approach that is used in this paper. One
advantage to this approach is that, since experimental parameters are not needed, any molecule can
be easily encoded. A disadvantage to this approach is that the descriptors used do not always give
an intuitive physical description of the effect of each parameter in the model. In addition, the models
generated are not easily comparable to one another because there is no standard set of descriptors
that is always used to build the models. The advantage of allowing a wide variety of descriptors is
that the set of descriptors used for a given model can be tailored to the model and, as a result, more
accurate models can be established. A major focus of this paper is the search for a set of molecular
descriptors that gives the best possible correlation between molecular structure and dielectric

constant.

The development of a QSPR requires a mathematical technique to build the model. There are
many classical multivariate calibration techniques available that could be used. These include
multivariate linear regression, partial least-squares regression, and principal components regression

[11-13]. The equation for multivariate linear regression is

Y=ay+ a1 X; +aXs +... + apXy, (4)
where Y is the output or dependent variable, Xj, ... , X; are the inputs or independent variables, and
ay, ... , a, are regression coefficients calculated from a set of data (the calibration set) in which both

the independent and dependent variables are known.

The model building technique used in this research, however, is the neural network. Whereas

classical modeling requires a knowledge of the regression formula (such as the linear relationship



in equation [4]), the neural network does not. The advantage is that the neural network develops a
nonlinear relationship among the input variables without requiring a predefined relationship
specified by the user. Neural networks are patterned after the connections of neurons in the brain
and have an input layer of neurons, one or more intermediary layers of neurons (hidden layers), and
an output layer of neurons. Each of the neurons in a given layer is connected to each of the neurons
in the following layer, and each connection is assigned a weight. The weight values are to neural
networks what regression coefficients are to a linear regression model. The process of determining
the weights is an iterative process known as training the neural network, and this process is described

in more detail later.

2. Experimental

One of the steps necessary for this research was the assembly of a data set. A list of 676
compounds was created for which condensed-phase static dielectric constant data were available
from the CRC Handbook of Chemistry and Physics and the Handbook of Organic Chemistry [14,
15]. No limits were placed on the functional groups included, and, consequently, a very wide range
of compounds resulted. The elements represented include hydrogen, carbon, nitrogen, oxygen,
fluorine, chlorine, bromine, iodine, and sulfur. The CRC Handbook of Chemistry and Physics
references the National Bureau of Standards (NBS) Circular No. 514 as its source of dielectric
constant data [16]. The references from which this circular compiles its data range in publication
date from 1892 to 1950. The NBS rates the probable accuracy of these dielectric constant data as
ranging from better than 0.5% to worse than 2.0%, depending upon the compound. The
temperatures at which the dielectric constants were measured range from -89° C to 220° C, with 615

of the compounds falling in the temperature range from 0° C to 40° C.

Some of the molecular descriptors used in this work require three-dimensional (3-D) coordinates.
A large database of 3-D coordinates was supplied by the Center for Intelligent Chemical
Instrumentation located at Ohio University [17]. The coordinates in this database were obtained by

the use of a molecular mechanics package, MM2, developed by Allinger at the University of Georgia



[18]. Of the 676 compounds with dielectric constants, 565 have reasonable 3-D coordinates. Some
of the molecular descriptors also require electronic data such as dipole moments, polarizabilities, and
partial atomic charges. These values were calculated using the quantum mechanics package,
Gaussian 94 User’s Reference Guide [19]. Hartree-Fock self-consistent field calculations using the

6-31G basis set were successful for 540 of the compounds.

The computations described in this paper were implemented on Silicon Graphics Incorporated
(SGI) computer systems located at the U.S. Army Research Laboratory (ARL) at Aberdeen Proving
Ground (APG), MD. One of these systems is a Power Chalienge Series with 12 R8000 processors
running under Irix (version 6.2, SGI; Mountain View, CA). The other system consists of a cluster
of five SGI Origin 2000s, with a total of 288 R10000 processors. The neural network software and
the molecular descriptor software used in this work were developed using FORTRAN 77. The
database software was supplied by the Center for Intelligent Chemical Instrumentation at Ohio

University.
3. Results and Discussion

3.1 Molecular Descriptors. Molecular descriptors are often classified as topological,
geometric, or electronic descriptors. A good overview of a variety of useful descriptors in each of
these three classes is given by Katritzky and Gordeeva [20] in a study in which he examines the use
of these descriptors to build models for five physicochemical properties and four biological
activities. Jurs and coworkers have also published many articles [21-24] in which QSPRs are
developed using calculated molecular descriptors. Topological descriptors include the count of the
number of atoms of a particular elemental type in a given structure, the count of the number of
occurrences of a particular bond type, the count of the number of occurrences of a particular
structural fragment or functional group, molecular weight, molecular connectivity descriptors
[25-28], and a variety of related descriptors [29-31]. Geometric descriptors include moments of
inertia in which the principal axes of a structure are calculated [32], various calculations of

molecular volume [32, 33], shadow indices [34], and total solvent accessible surface area [35].



Electronic descriptors are generally calculated using quantum mechanics and are developed from
data such as atomic charges, highest occupied molecular orbital (HOMO), and lowest occupied
molecular orbital (LOMO) energies, electron densities, superdelocalizabilities, polarizabilities,
dipole moments, and various calculated energies. Karelson, Lobanov, and Katritzky [36] have
published an article in which these calculations and descriptors are thoroughly reviewed. Some
descriptors do not fit neatly into one of these three classes. Stanton and Jurs have developed a
charged partial surface area (CPSA) descriptor, which combines geometric and electronic
information [37]. Another mixed descriptor is the electronic-topological descriptor, which is
patterned after the molecular connectivity descriptors, with the exception that atomic charges are
used in the calculation rather than valences [38]. The descriptors used in this study are listed in
Table 1 and include topological descriptors, electronic descriptors, and the CPSA descriptors of
Stanton and Jurs. The grouping of the descriptors in this table, however, is by three artificial classes.
The first class (descriptors 1-12) includes the dipole moment, polarizability, counts of elemental
types, and the hydrogen bond descriptor. In an earlier study, these descriptors were the only
descriptors used and have been termed the “simple” descriptors. Since then, software has been
developed to allow the calculation of other types of descriptors such as CPSA descriptors (the second

class, descriptors 13-39) and molecular connectivity descriptors (the third class, descriptors 40-65).

Some of the topological descriptors, such as counts of elemental types, need no explanation. The
hydrogen bond descriptor is a binary descriptor for which a value of 1 indicates that a given structure
has either a hydroxyl group or a primary or secondary amine group. The remaining topological
descriptors used in this work are valence-corrected connectivity descriptors as developed by Kier and
Hall [25, 26]. This class of descriptor is very widely used in QSPRs. The forerunner to this
descriptor is the Wiener descriptor, which was developed in 1947 [39]. The Wiener descriptor is
the summation of the number of bonds in the shortest path between two carbon atoms for all pairs
of carbon atoms in the structure. In most current studies, the Wiener index is expanded to include
all nonhydrogen atoms, not just carbon atoms. In Wiener’s original study, this descriptor, along with
a second, was found to correlate with boiling point for a set of alkanes. In 1975, Randi¢ [40]
developed a significantly new and useful topological descriptor, which he termed “the branching
index.” This descriptor, ¥, which is now known as the molecular connectivity descriptor, is defined

in the following equation:



Table 1. Set of 65 Molecular Descriptors

m— —
P ——

No.| Descriptor Description
1 |Dipole Moment |—
2 |Polarizability  [—
" 3 |Carbon Count of the number of carbons
4 |Hydrogen Count of the number of hydrogens
5 [Oxygen Count of the number of oxygens
6 |Nitrogen Count of the number of nitrogens
7 {Fluorine Count of the number of fluorines
8 |Chlorine Count of the number of chlorines
' 9 |Bromine Count of the number of bromines
[ 10 |Iodine Count of the number of iodines
[ 11 [Sulfur Count of the number of sulfurs
" 12 |Hydrogen Bond |Presence of a hydroxyl group or a 1° or 2° amine
" 13 |PPSA-1° Sum of surface area for positively charged atoms
l| 14 [PNSA-1* Sum of surface area for negatively charged atoms
| 15 [PPSA-2° Sum of surface area for positively charged atoms * sum of positive charges
16 [PNSA-2° Sum of surface area for negatively charged atoms * sum of negative charges
17 |PPSA-3* Sum of each (surface area for positively charged atom * positive charge)
18 |PNSA-3* Sum of each (surface area for negatively charged atom * negative charge)
19 |DPSA-1* PPSA-1 - PNSA-1
20 |DPSA-2* PPSA-2 - PNSA-2
| 21 |DPSA-3* PPSA-3 - PNSA-3
[ 22 |[FPSA-1° PPSA-1/total surface area I
[ 23 [FNsA-1? PNSA-1/total surface area |
24 |FPSA-2° PPSA-2/total surface area
25 |[FNSA-2* PNSA-2/total surface area
26 |FPSA-3° PPSA-3/total surface area
27 |FNSA-3? PNSA-3/total surface area
28 |[WPSA-1* (PPSA-1 * total surface area)/1,000
29 |WNSA-1? (PNSA-1 * total surface area)/1,000
30 |WPSA-2° (PPSA-2 * total surface area)/1,000
31 |[WNSA-2? (PNSA-2 * total surface area)/1,000
32 |[WPSA-3* (PPSA-3 * total surface area)/1,000
33 |[WNSA-3? (PNSA-3 * total surface area)/1,000
34 |Rel Pos Most positive charge/sum of positive charges
35 [Rel Neg Most negative charge/sum of negative charges
36 |RPCS?

Surface area of most positively charged atom * most positive charge

2 Symbols are taken from Stanton and Jurs [37].



Table 1. Set of 65 Molecular Descriptors (continued)

—— —

I_No. Descriptor - bescription
37 {RNCS* Surface area of most negatively charged atom * most negative charge JI
38 [Sum Pos Sum of all positive charges '
39 [Sum Neg Sum of all negative charges
40 (O Connectivity for atoms |
41 (MY Connectivity for bonds (paths with two atoms) i
42 Y Connectivity for two bond paths (paths with three atoms) I
43 Py, Connectivity for clusters with two bond paths
44 v Connectivity for stars with two bond paths
45 Py, Connectivity for three bond rings
46 [y Connectivity for three bond paths
47 [*y", Connectivity for clusters with three bond paths
48 Py Connectivity for stars with three bond paths
49 *y"; Connectivity for four bond rings
50 [*y¥ Connectivity for four bond paths i
51 Py, Connectivity for clusters with four bond paths
52 [y, Connectivity for stars with four bond paths
53 Py Connectivity for five bond rings
54 [x¥ Connectivity for five bond paths
55 |5, Connectivity for clusters with five bond paths
56 |™x" Connectivity for stars with five bond paths
57 |5, Connectivity for six bond rings
58 |5 Connectivity for six bond paths
59 %" Connectivity for clusters with six bond paths
60 [y Connectivity for stars with six bond paths
I 61 'y Connectivity for seven bond rings
62 [Ty Connectivity for seven bond paths
63 [*y". Connectivity for clusters with seven bond paths
64 [Py Connectivity for stars with seven bond paths
65 Y, ___|Connectivity for eight bond rings

# Symbols are taken from Stanton and Jurs [37].




©)

1
X—i=l (m* n)l/z ’

where p is the number of bonds in the carbon skeleton, and m and r are the valencies of the two
atoms in a given bond. The following equation gives an example calculation for n-butane, which
contains two bonds between a primary and secondary carbon and one bond between two secondary

carbons:

N 1 + 1
x (1x2)"  (@=2)"  (@x2)

=1.914. (6)

This descriptor is based on principles from graph theory and was used to build successful models
for various physical properties such as Kovits indices, boiling points, and enthalpies of formation.
Kier and Hall greatly expanded Randié’s branching index to allow heteroatoms, carbons with
hybridizations other than just sp’, and extended paths other than just a two-atom bond [25, 26]. The
resulting class of molecular connectivity descriptors is termed the valence-corrected connectivity
descriptor and is denoted by %". The calculated valency for a heteroatom is the number of attached
nonhydrogen atoms plus the number of pi and lone pair electrons. An alcohol oxygen, for example,
has a value of 5—a sum of 1 for the sigma bond and 4 for the lone-pair electrons. For a multiply
bonded carbon, the valency is calculated as the number of attached bonds excluding hydrogens. For
example, a carbon in a carbon-carbon double bond has a value of 2. The extension of the molecular
connectivity descriptor to paths of greater than length 2 is illustrated by the following equation in

which the summation occurs over all three-atom paths.

2.,V \ 1
I N I 7
X ;(m*n*p)n @)

where m, n, and p are the valencies of the three atoms in the path, ¢ is the number of three-atom paths

in the molecule excluding hydrogens, and the superscript 2 denotes that fact that there are two bonds

10



in the paths over which the connectivity is calculated. The molecular connectivity descriptor has not
only been expanded to include paths of all lengths, but also includes other connectivity arrangements
such as clusters (c), stars (s), and rings (r). A cluster is a path in which one atom has one branch. A
star is a path in which one atom has two branches. A ring is a path in which two nonadjacent atoms
in the path are connected to each other. When considering an arbitrary substructural fragment, thé
atoms not involved in that fragment are ignored. For example, a path of length 3 can have a
branching atom, but, if one is looking for all paths of length 3, that particular path is still counted as
a valid path of length 3. The most involved aspect of the molecular connectivity calculation is the
enumeration of all the paths, clusters, stars, and rings of a specific atom count. A discussion of some

software that has been written to do this is given in Appendix A.

The only purely electronic descriptors used in this work are the dipole moment, the polarizability,
and four partial charge descriptors (descriptors 34, 35, 38, 39). The dipole moment and
polarizability were calculated using Gaussian 94 as described in the experimental section. Partial
atomic charges were also calculated using Gaussiaﬁ 94 and were combined with surface area for the
CPSA descriptors. The CPSA descriptors allow the distribution of charge in a molecule to be
described on an atom-per-atom basis. These descriptors require the calculation of the surface area
of a molecule and, more specifically, the surface area associated with each atom in the molecule.
This is a nontrivial calculation. Stanton and Jurs reference Pearlman [35] for his method for the
calculation of surface area. In Pearlman’s article, several methods are discussed for the calculation
of surface area. One of these methods has been adapted and impleménted for the work described in

this paper and is discussed in Appendix B.

3.2 Neural Networks. There are many articles in the chemical literature that review neural
networks and even more that report the application of neural networks to some particular problem.
Neural networks can be applied to a very wide range of problems, such as classification and model
building, and have been proven to be universal function approximaters. The hisfory of neural
networks is reported to reach back to the 1940s and 1950s and has been discussed to some extent in

a number of sources [41-43]. Neural networks achieved prominence in the 1960s until a noted

11



researcher in the artificial intclliggnce comfnunity, Marvin Minksy, proved that the neural networks
of that era, perceptrons, were incapable of classifying systems that are not linearly separable [44].
Perceptrons are neural networks that have an input layer and an output layer and use linear activation
functions, and they are equivalent to linear learning machines. Neural networks entered a relatively
dormant stage until the 1980s when research was published that overcame the limitations of the
perceptrons of the 1960s. In 1982, Hopfield published a paper in which nonlinear transfer functions
were introduced [45]. In 1986, Rumelhart, Hinton, and Williams published a key paper [46] in
which the very popular “back propagation” training algorithm was introduced. Rumelhart’s method
incorporates the generalized delta rule as part of the training process and is discussed in some detail
later in this paper. Several reviews of neural networks have been published in the chemical literature
[41-42, 47-51]. In addition, a number of application papers do a good job of explaining the basic
concepts of neural networks [52, 53]. A book by Zupan and Gasteiger [54] has a very good
explanation of the generalized delta rule and the accompanying back propagation training algorithm
as intfoduced by Rumelhart. A neural network frequently asked questions (FAQ) site maintained
by Warren Sarle is a very good source of information and contains recommended reading resources
[55]. Two very useful books by Timothy Masters provide good explanations and source code in C++

for the key aspects of multilayer feed-forward neural networks [43, 56].

There are a great many types of neural networks based on the architecture and training algorithm
used. Lists of many of these types along with varying degrees of description can be found in a
number of references [41, 50, 53]. The most frequently used general-purpose neural network and
the network used in this work is the multilayer feed-forward neural network. This type of neural
network generally uses supervised training in which both the input and output values of the
calibration set members used to train the neural network are known. The process of training the
neural network consists of many training cycles in which each member of the calibration set is
presented to the neural network. The input values for a given structure are propagated forward
through the neural network to the output node at which point the calculated output is compared to
the actual output (the dielectric constant in this case) and an error is calculated. This error is

propagated backward through the neural network, and the amount of error associated with each
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weight value is calculated. The training algorithm then uses this information to adjust each of the
weight values in a manner that reduces the error of the calculated dielectric constant for the current
member of the calibration set. By incrementally adjusting the weight values of the neural network
to accurately calculate the dielectric constants of the calibration set structures, a generalized model
is developed that will predict the dielectric constant of any compound that shares similar structural
characteristics with the compounds in the calibration set. The remainder of this section discusses
the details of the operation of multilayer feed-forward neural networks. Some of the key parameters

associated with these neural networks are listed in Table 2.

Table 2. Key Parameters in Neural Networks

Number of hidden layers (generally one)

Number of nodes in hidden layer

Use of bias nodes

Scaling of inputs

Method used to calculate net input to a given node
Activation function

Error function

Method for optimization of weights

Determination of stoEB' ing point for traning

3.2.1 Forward Prépagation. The first step in the neural network process is the forward
propagation of information through the network. It is this forward propagation that is responsible
for the feed-forward label in the type of neural network used in this paper. Figure 1 is given to
illustrate the network and the forward-propagation process. The circles in layer O represent the input
variables to the model (the molecular descriptors). The circle in layer 2 represents the output
variable (the dielectric constant). For some applications, such as classification, there are multiple
nodes in the output layer. The circles in layer 1 represent nodes in a hidden layer. The hidden layer
provides extra terms for use in building the model. Although a hidden layer is not required, it is
normally necessary to build a good model. Generélly, only one hidden layer is used, but more can

be used if the relationship being modeled is highly complex. One node in each layer except for the
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output layer has been labeled a bias node. Bias is analogous to a constant offset in least-squares
regression and gives added flexibility to the neural network. One can think of the bias node as an
extra source of input for each layer in the neural network. The bias node is generally assigned an
output value of 1.0 and differs from other nodes in that nodes in a given layer do not propagate
information forward to the bias node in the next layer. Every node in a given layer is connected to
every nonbias node in the next layer, and each of these connections is represented by an arrow in
Figure 1. A neural network in which there is a connection between every pair of nodes in adjacent
layers is termed a fully connected neural network. Associated with each connection is a weight
value,Wif , where k denotes the second layer in the connection, i is the label of the node in the first
layer of the connection, and j is the label of the node in the second layer of the connection. The
weight values are initially randomly assigned as small real numbers. Forward propagation occurs
by taking the output from every node in a given layer and multiplying that output by its associated
weight value for each connection to a given node in the next layer. These products are summed
together, and this net value is the combined input to a specific node in the next layer. Consider, for
example, the contribution from the nodes in layer 0 to node 1 in layer 1. The net input to this node

for a given member of the training set is

Netll =zm11 *X,' +9, (8)

i=1

where the superscript of 1 for Net refers to the layer to which the input is going, the subscript of 1
for Net refers to the node to which the input is going, X; is the value of the ith input (molecular
descriptor in this case) for that member of the training set, € is the weight value associated with the
bias node, and W;;" is the weight value for the connection of the ith node in layer O to the first node
in layer 1. The biological analog is the fact that a neuron receives an input from all of the neurons
connected to it. The summed value, Net,!, is acted on by a function called the activation function

or the transfer function. As an example, the value output from node 1 in the hidden layer is

out,' = f (Net,' ). ©)
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The purpose of this function is to allow the calibration model to model any nonlinearities present in
the relationship between the molecular descriptors and the dielectric constant. The biological analog
to the activation function is the fact that a certain amount of electrical stimulus must reach a neuron
from connecting neurons for that neuron to fire a signal to the next layer of neurons. This biological
activation function is a step function. Two very popular nonlinear transfer functions are the
sigmoidal transfer function and the hyperbolic tangent function. Most literature sources report that
the choice of activation function does not greatly affect the results of the neural network as long as
a nonlinear function is used. The inputs to a neural network are typically scaled to fit the range
appropriate for the activation function (¥ = 0.0 to 1.0 for sigmoidal; ¥ = - 1.0 to 1.0 for hyperbolic
tangent). The scaling is carried out independently on the set of values (one value for each member
of the calibration set) for each independent variable (molecular descriptor) and dependent variable
(dielectric constant) in the model. Although scaling is not considered necessary for the successful
training of a neural network, it does greatly speed up the training process and is generally employed.
A typical method of scaling and the method used in this work is to simply subtract the midpoint of
the set of numbers from the number to be scaled and then to divide the resultant by the range of the
set of numbers [52]. Another option would be to use the mean and standard deviation of the set of

numbers for scaling [57].

This process of summing inputs and applying a transfer function is repeated for each of the nodes
in the hidden layer. The resulting output values of the hidden layer nodes are used as input values
for the node in layer 2. The process is repeated and an output value is calculated for this node. This
calculated output is compared to the actual dielectric constant after the appropriate scaling, and the
difference is the error of the current member of the calibration set for the current set of weight values
for the connections in the neural network. The error can be calculated in various ways, and the error
function chosen will have an effect on the results obtained by the neural network. One can use an
absolute value of the difference, or a squared value of the difference, or a relative value in which the
difference is divided by the true value. If there are multiple output nodes, a mean calculation of the
error values must be used in which the error associated with each node in the output layer is

included. In this work, the squared value of the difference at the single output node is used.
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3.2.2 Backward Propagation of Error. The second step in the neural network process is the
backward propagation of the error. The result of this step is that the error is distributed
proportionally across the neural network with the nodes contributing the largest input (having the
most significance) accepting the largest amount of the error. Mathematically, the amount of error
associated with a given neural network connection is the partial derivative of the error with respect
to the weight associated with that connection. The mechanism by which this procedure is

accomplished is by use of the chain rule from calculus, which states

L rwl- LIrwl<. (10)

For this application, fu) is the error such that

Fu) = E* (output® (net* (w? ), a1
where the error, E, is the error associated with the output of the jth node of the kth layer and the input
to that jth node is from the ith node in layer £ - 1. Thus, the error associated with a given connection
from layer k - 1 to layer £ is a function of the output in layer k, which is a function of the transfer

function, which is a function of the input from the ith node in layer k - 1. Using multiple

applications of the chain rule, the partial derivative of this function is:
k k k k
OE" _ [ 0E" |, d0ut; | ( ONet; . (12)
oW, d0ut} | | ONet} oW

A thorough explanation of the details for the derivations of each of these terms can be found in

chapter 8 of the book by Zupan and Gasteiger [54]. The results of these derivations are given here.
The partial derivative of Net with respect to W is Out/*™’. Since Out;" is a result of the application
of the transfer function, the partial derivative of Outf with respect to Netjk is the derivative of the

transfer function that was used, evaluated for the value Netjk. As an example, the derivative for the
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sigmoidal transfer function is Out{(1 - Out/"). The partial derivative of E* with respect to Out;*
depends upon k (the layer). If the layer is the output layer, the partial derivative is -2(y; - Outj"),
where y; is the actual value associated with the output node j in the output layer and Outj" is the
calculated value for the output node j in the output layer. If the layer is a hidden layer, the
calculation of the partial derivative is less straightforward because the error is not calculated directly.
If the assumption is made that the error is distributed evenly across all nodes in the hidden layer, the

partial derivative is

OEF &
PR 13
d0ut! ; S 1

where m is the number of nodes in layer k + 1, i is the node of interest in the hidden layer, and ;"'

is the error that has been propagated backward from layer £ + 1 and is given by
k+1 k+1
SI;H = oF k+ 1 80utg Ty a4
o0ut; ONet;*

where both terms in this equation are the calculated values from the output layer.

Consider the back propagation to proceed in multiple steps for a neural network with an output
layer and one hidden layer. The first step calculates the error associated with each connection to the
node in the output layer. The second step propagates the error from the output layer back to the
hidden layer in the form of delta values. These delta values allow the error associated with each
connection to the hidden layer to be calculated. The full equation for the output layer for the case

in which a sigmoidal transfer function is used is

aE*
oW}

~2(y, — Out* )Out* (L- Our* JOur*™", (15)
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where £ is the output layer, i is the node in the hidden layer for the connection, and j is the node in

the output layer for the connection. The full equation for the hidden layer is

aEk = k+1 k+1 k k k-1
o= 28 W (our] (- Out* Jourt ™, (16)
i p=l

where % is the hidden layer, i is the node in the input layer for the connection, j is the node in the
hidden layer for the connection, and m is the number of nodes in the output layer. Using these
equations, a partial derivative of the error can be calculated for each of the connections in the neural

network.

3.2.3 Optimization of the Weights. The third step in the neural network process is the
adjustment of the weight values based upon the distributed error values, aE/BW,-j", as calculated in
the previous section. The weights can be adjusted after the presentation of a single member of the
calibration set to the neural network or after all members of the training set have been presented to
the neural network. In the work presented in this paper, the latter method is used. The distributed
error value for a given connection is the sum of the error values for each of the members of the
calibration set for that connection. The method by which these distributed errors are used to adjust
the weights is called the training method. A helpful way to visualize the weight adjustment process
is by the aid of a response surface as illustrated in Figure 2. The x and y axes represent two
connections in the neural network. The weight values for each connection may be varied across a
range of values. An actual neural network would be represented by an n-dimensional response
surface rather than a two-dimensional (2-D) response surface where » is the number of connections
in the neural network. The z axis represents the error associated with a given state of the neural
network, where the error can be calculated using any of the error functions described previously.
The collection of weight values for a given state can be thought of as a weight vector. Associated
with each point on the response surface is the vector of the partial derivatives of the error with

respect to each weight as obtained by the back-propagation process.
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The response surface imagery previously described frames the search for the best set of weight
values as an optimization problem. The process of optimization is a major subject area about which
much has been written [58, 59]. There are two choices attendant with any optimization process. The
first choice is to select an algorithm that will find the closest local minimum, and the second choice
is to select an algorithm that will find the global minimum. Some of the techniques used to find
global optima include simplex optimization, simulated annealing, and genetic algorithms [60-67].
While using a global optimum technique would be the ideal solution, there are many parameters that
must be set and tweaked to use a global technique. In addition, there is no guarantee that a global
minimum will be found. Masters [43, 56] covers the use of simulated annealing for weight
optimization in neural networks, and Jurs and coworkers [68, 69] have reported the use of this

technique in several application papers.

The search for a local minima is a much simpler problem, and the majority of training algorithms
associated with neural networks are local optimization routines. If one repeats the local optimization
numerous times at different randomly selected points on the response surface and chooses the best
local minimum from the repeated runs, a good local minimum approximating the global minimum
should be found. The process by which the best run is selected is described in a later section. The
fact that neural networks have multiple global minima due to the symmetries present increases the
probability that a good local minimum will be found. The most popular local minimization
algorithm is the steepest descent method developed by Rumelhart [46] and incorrectly referred to
as back propagation. This is a misnomer as back propagation should refer to the propagation of the

error backward through the neural network and not to the algorithm used to adjust the weights.

The first step in any local optimization procedure is to select the direction on the response surface
in which to move away from the current position. The direction chosen by the steepest descent
method is the negative of the gradient, which is calculated in the back-propagation step. This -
gradient is simply the vector of partial derivatives of the error associated with each point on the
response surface. The second step in a local optimization procedure is the choice of how big a step
to take from the current position on the response surface. The steepest descent method uses a fixed

value called the learning rate, which is set by the user. Some versions of this method allow the user
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to change the learning rate at fixed points throughout the training process. Most implementations
of Rumelhart’s steepest descent method add a second parameter, momentum. The momentum is a
constant that is multiplied by the previous adjustment to the weight vector. The resulting value is
added to the new weight value and helps to keep the optimization moving in a constant direction
unless a dramatically new direction is introduced by the gradient. The steepest descent method for
training neural networks as introduced by Rumelhart is a useful method, but it is very inefficient
when compared to other more advanced methods that have been introduced since that time. It is

probably still so widely used because it is such a familiar and historically important algorithm.

Local optimization can be divided into three major classes: nonderivative methods, first
derivative (gradient) methods, and second derivative methods. Nonderivative methods use only
information from the function being optimized and are relatively inaccurate and unreliable and,
hence, are not generally used. First derivative methods use gradient information calculated from the
function to determine the search direction on the response surface for the optimization. The steepest
descent method falls into this class. Conjugate gradients are another valuable method belonging to
this class. The second derivative methods use the second derivatives of the function (the Hessian)
to determine the search direction. Discrete Newton, truncated Newton, and quasi-Newton methods
fall into this class. Another method, the Levenberg-Marquadt method, can also be classified as a
second derivative method. These three classes of local optimization methods are discussed by
Schlick in a review article [70] and in the optimization texts already mentioned. In addition, Masters
[43, 56] goes into great detail explaining the conjugate gradient method and the

Levenberg-Marquardt method and includes computer code for these methods as well.

The algorithm used in this work is a quasi-Newton method developed by Broyden [71],
Fletcher [72], Goldfarb [73], and Shanno [74]. It has been used successfully in a number of papers
by Jurs and coworkers [75-77]. It is a much more efficient method than Rumelhart’s steepest
descent method. One reason for the utility of this method is that the search direction is determined
using second derivative information rather than just gradient information. A second reason is that
a line search is used to determine the step size rather than using a fixed step size. Historically,

second derivative methods have not been feasible because of the difficulty of calculating the Hessian
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and its inverse and because of the large amount of memory required. The Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) method overcomes both of these problems. The first problem is
overcome by the use of an approximation to the inverse of the Hessian rather than explicitly
calculating this matrix. This approximation is calculated using only gradients and function
information. The second problem is overcome by the use of an update procedure in which the
approximated Hessian is updated after each step in the optimization process. Only a small number
of the most recent updates (three to seven) are needed to calculate the most current inverse of the
Hessian. Therefore, only the most recent updates need to be stored in memory and older updates are
deleted. An added benefit is that as the updating process progresses, the approximation to the
Hessian becomes increasingly more accurate. Nocedal [78] wrote an important paper describing the
implementation of the BFGS method [78]. In addition, there is information on a website including
tutorials on optimization and source code [79]. A key equation in this approach is the Newton

equation:
B.d, = -VF(X,), (17)

where k is the current iteration, By is the Hessian, dy is the search direction, and Vf(Xy) is the

gradient at X;. This equation can be solved for d; as follows:
d, = -HVf(X;), (18)

where H; is the inverse of the Hessian. The formula that was developed to update the inverse

Hessian without explicitly calculating the Hessian or its inverse is

T T T
Hy,, = 1- 20 |, [1- 230 |, S0 (19
. Yk Sk Yk Sk Yk Sa‘c

where I is the identity matrix, Sp is Xp1 - Xk, Yi is VAXin) - VAXK), Hyy is the current

approximation to the inverse of the Hessian, and Hy is the approximation to the inverse of the
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Hessian from the previous iteration. This formula lends itself to a recursive implementation. The
first step is the approximation of the initial inverse of the Hessian, Hy. An identity matrix is
generally used for Hy. Given Hyp, H; can be calculated. Given H;, H; can be calculated and so on.
The article by Nocedal gives a clear step-by-step presentation of this updating procedure. After each
update of Hy, a line search is performed in the search direction obtained by Hy to find the correct step
size, a.. In its simplest form, a line search uses a series of carefully chosen guesses to bound the
minimum in one dimension and refine that range to some degree of precision, at which point the
midpoint of the range is selected as the desired step size. A clear explanation of the line search
algorithm along with source code is given by Masters [43]. This code was translated to FORTRAN
and used in the neural network software developed for this research. Given the direction, dy, and the

step size, @, the new value for X, is
Xk+l=Xk +adk. (20)

Each iteration of the BFGS algorithm represents one training cycle. It was found that the BFGS
method requires a small fraction of the number of training cycles needed by back propagation. There
are more function evaluations per cycle for the BFGS method then back propagation, but the amount

of training time is still significantly smaller for BFGS method then for back propagation.

An important issue in training a neural network is the stopping point for the training. One
method is to keep training until the calibration error drops below a certain point. The danger with
this method is that a model developed by a neural network can be overtrained, at which point the
model loses its ability to make accurate predictions for compounds that are not in the calibration set.
The currently accepted procedure that avoids overtraining is the use of a monitoring set. The error
for a set of compounds that are not members of the calibration set is calculated at regular intervals
throughout the training. As the quality of the model improves, the error associated with the
monitoring set decreases. At some point in the training, the model begins to overtrain. At this point,
the error associated with the monitoring set begins to increase. When this increase in monitoring

error is detected, training is halted and the neural network associated with the minimum monitoring
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set error is chosen as the appropriately trained neural network. It was found that the monitoring set
error did not always reach a minimum and then gradually and smoothly become larger with more
training cycles. However, an acceptable solution was found using the monitoring set. Every neural
network was trained for 250 training cycles using the BFGS method. Generally, the training set error
rapidly decreases and reaches a relatively constant level by 50 iterations. A search then began for
the iteration with the lowest training set error over the 250 iterations with the condition that the
corresponding monitoring set error not exceed 110% of the average monitoring set error between 50
and 80 iterations. Given an appropriate ending point for training, a third independent set of

compounds, the test set (validation set), is then used to test the resulting neural network.

3.3 Model Building. Two important and interconnected steps in the model building process
are the selection of the independent variables and the selection of the calibration set. One can think
of the set of independent variables as the set of coordinate axes that defines the data space into which
the members of the training set (calibration set), monitoring set, and test set fall. These three subsets
form the universe of data points. It is important that the data points in the universe evenly cover the
entire data space over which the calibration model is built and over which one wishes to make
predictions. An additional and opposing goal is to make this data space as large as possible so that
predictions can be made over as wide a range as possible. Generally, one must limit the size of the

data space to ensure the development of accurate calibration models.

Normally, one does not know which independent variables are truly necessary for the prediction
of the dependent variable. A set of compounds can be selected, which evenly cover the data space,
but, if the coordinate axes of that data space do not collectively correlate well with the dependent
variable, the model developed will be poor. In this work, a number of models have been created
using different sets of independent variables and the model has been selected, which gives the lowest
error for the calibration set and the test set. To allow a valid comparison of the models, one should
use the same calibration set and the same test set. There is a conflict, however, because the
distribution of compounds in the data space may be even for some of the models, but may be uneven

for other models. A compromise must be reached, where the universe of compounds is limited so
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that the compounds in the calibration set are distributed as evenly as possible in each of the data

spaces as defined by the coordinate axes for each model.

The set of 540 compounds, as described in the experimental section, have dielectric constant
values ranging from 1 to 185. Figure 3 shows the distribution of the compounds based on dielectric
constant. A total of 67.6% of the compounds falls within the range from 1 to 10. An additional
29.4% of the compounds fall within the range from 10 to 40. Only 16 compounds have a value
greater than 40. Some preliminary experiments gave very poor results for models built over the full
dielectric constant range. The best results were obtained for models built over the range of 1 to 10.
By restricting models to this range, however, it would not be possible to predict dielectric constants
for many of the compounds in which there was an interest. The preliminary models built over the
dielectric constant range from 1 to 40 gave test set results that were acceptable. Therefore, all of the
models reported in this research were developed from a calibration set in which no compounds with
dielectric constants greater than 40 were used. From a theoretical viewpoint, it is more appealing
to limit the compounds in the calibration set based on the values of the independent variables, but,
from a practical point of view, it made sense to limit the calibration set based on the dependent
variable. Of the 524 compounds remaining, only 27 contain flourine, sulfur, or iodine. These

compounds were removed, and a total of 497 compounds remain.

Given the final set of compounds selected for model building, the next step is the division of
these compounds into a training set, a monitoring set, and a test set. The compounds for each
training set were chosen so that the most diverse compounds in the universe were included. The
monitoring set compounds were selected from the compounds not included in the training set, and
the remaining compounds were used as the test set. The first step in this selection process for a
given experiment is the performance of principal components analysis (PCA) to reduce the
dimensionality of the data space from m independent variables to » principal components, where n
is the number of principal components needed to explain 95% of the variance in the data. A
maximum of 10 was allowed for n because of memory limitations. PCA is a data-reduction
algorithm that is widely used and is described in a number of tutorials [80-81]. Each of the

coordinate axes is partitioned into a number of equally spaced partitions, and the compounds
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in the universe are then mapped into the resulting n-dimensional grid, where »n is the number of
principal components selected. The size of the partition is selected so that the total number of
occupied blocks is less than or equal to the number of compounds in the training set. The box in the
n-dimensional grid into which each compound falls is recorded. The occupied boxes are then
traversed, and the most centrally located point in each box is selected as a member of the current data
~ set—training set or monitoring set. If after 10 traversals of the data space the desired number of
compounds for the current data set is not found, that model is not built. The software used for this
algorithm was a revised version of the software written by Carpenter and Small [82]. In all of the
models reported in this work, 350 compounds are selected for the training set, S0 compounds are
selected for the monitoring set, and the remaining 97 compounds are used for the test set. The
drawback to this method is that the same set of compounds is not always chosen for the training set,
monitoring set and test set for each of the models developed. This drawback was outweighed by the
fact that this method results in the most representative sampling of the universe of data points for

each set and by the fact that the combined members of the data sets remain constant.

3.4 Neural Network Parameters. The number of nodes in the hidden layer for each neural
network is set to a total of six nodes, including one node for the bias. The number of nodes in the
input layer is simply the number of molecular descriptors plus one node for the bias. The activation
function for the hidden layer and the output layer is the hyperbolic tangent. The inputs are scaled
to the range from - 1.0 to 1.0. Each neural network is trained using the BFGS algorithm for a total
of 250 training cycles with the endpoint being selected as discussed earlier. There are two ways that
the training set error is reported. The method used in the training of the neural networks is to
calculate the mean-squared error for the scaled values of the dielectric constants in the training set.
The resulting reported values range from approximately 0.01 to 0.06. The monitoring errors are
calculated in the same manner and range from approximately 0.01 to 0.10. The second method used
to report the training set errors is to calculate the mean absolute value of the errors for the dielectric
constants after they have been converted back to their normal range. These values range from
approximately 2.5 to 6.0. The test set errors are also calculated and reported using this method and

range in value from approximately 1.2 to 12.0. In several clearly marked cases, root-mean-square
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error values in this range are also reported for the test and training sets. In the following sections,
the particular error calculation method used can be determined by the approximate magnitude of the

CITor.

3.5 Exploratory Experiments. The majority of the work reported in this paper is a search for
the set of independent variables that best correlate with dielectric constant. In an earlier section, a
large set of potential independent variables (molecular descriptors) is described (Table 1). If the
entire set of variables is used, the resulting model would be drastically overfit. Therefore, a small
subset of descriptors must be selected from this pool of descriptors. There are a number of standard
techniques that can be used to do this [21, 83, 84]. The first step used was the removal of
descriptors that have a large percentage of compounds for which the value is 0. Descriptors 7, 10,
11, 44, 45, 48, 49, 52, 53, 56, 60, 61, 64, and 65 all have less than 40 (of 497) nonzero values and
were removed from consideration. The second technique employed was the calculation of a pairwise
correlation for every possible pair of descriptors in the pool of descriptors. If the correlation was
greater than some percentage, one of the two descriptors was removed from consideration. For the
51 descriptors remaining after step 1, there are 1,275 pairs of descriptors (51 * 50/2). Of these pairs,
seven have correlations greater than 97%. As a result, descriptors 20, 23, 28, 30, 32, 39, and 41 were
also removed from consideration. From the remaining descriptors, a Gram-Schmidt
orthogonalization procedure was implemented to choose the set of descriptors that best covers the
range of information encoded in the descriptors. The descriptor that correlates best with the
dielectric constant is chosen as the first descriptor in the subset. The second descriptor chosen is the
descriptor with the maximum amount of orthogonal information to the first descriptor in the subset.
The third descriptor contains the maximum amount of orthogonal information to the first two
descriptors in the subset. This process continues until a set number of descriptors is chosen or until
a given percentage of variance in the data is explained. This procedure was performed independently
for the three sets of descriptors. All nine simple descriptors were chosen as final members of the
first set of descriptors. Twelve of the CPSA descriptors were chosen from the second set of
descriptors (13-16, 18, 19, 22, 25-27, 31, 33). Ten of the molecular connectivity descriptors were
chosen from the third set of descriptors (40, 42, 46, 50, 54, 55, 57-59, 62). The orthogonalization

was also carried out for the set of all descriptors and was used along with the information from the
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results of model building for the first three sets of descriptors to choose 16 descriptors from all three
sets of descriptors for a fourth set of descriptors (1, 2, 3, 5, 6, 12, 16, 22, 25, 27, 33, 40, 42, 46, 59,
62).

For each of the 4 sets of descriptors, calibration models were built for every possible subset of
descriptors starting with a minimum of 4 descriptors in a model and resulting in a total of
382 experiments for the set of simple descriptors, 848 experiments for the set of molecular
connectivity descriptors, 3,797 experiments for the set of CPSA descriptors, and 64,839 experiments
for the combined set of descriptors. Each neural network must be repeated numerous times with
different randomly selected initial weight values, as discussed earlier, to allow the selection of a
neural network with a good local optima. Due to the large number of experiments to be performed,
each neural network is repeated only 10 times and the average error of these 10 runs is used to

compare the results of these exploratory experiments.

The distributions of the models for each of the four sets of descriptors based on the training set
and test set errors are given in Figures 4-7. Tables 3 and 4 summarize these distributions for the
training sets and test sets, respectively. Column 2 lists the number of models in that descriptor
category that were successfully built. Column 3 lists the error for the model with the lowest error,
and column 4 lists the error for the model with the highest error, where the reported error is an
average of the errors of the 10 neural network runs. It should be noted that the model with the lowest
training set error is generally not the model with the lowest test set error. Column 5 is the mean error
of all the models that were successfully built for that particular descriptor category, where each
number contributing to the average is itself an average of the 10 neural network runs. The mean
error in column 5 esséntially marks the center of the distributions, as seen in Figures 4-7. The
standard deviation essentially describes the spread of these distributions. One can clearly see from
these figures and tables that the molecular connectivity descriptors give the worst models and the
CPSA descriptors give the next-to-worst results. The results from the simple descriptors compared
to the results from the combined descriptors are closer, but the combined descriptors do give models

that are clearly better than the best models obtained with the simple descriptors. There are
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Table 3. Training Set Results for Exploratory Experiments

Set | No. of Models -Mi_nimu@nora I@m Error’ | Mean ErrLr_"I
Simple 359 315 | 589 4.05 + 0.56
Chi 784 427 5.41 4.79 £ 0.97
CPSA 3,797 3.60 5.59 4.32 +£0.50

“ Combined 64,756 | 257 5.47 3.64+0.92 I

? Training set error for the model with the minimum training set error.

Training set error for the model with the maximum training set error.
© Mean of the test set errors.

Table 4. Test Set Results for Exploratory Experiments

2 Test set error for the model with the minimum test set error.
b Test set error for the model with the maximum test set error.

¢ Mean of the test set errors.

2,215 models using the combined descriptors, which have a training set error less than 3.4 and a test
set error less than 2.4. For the simple descriptors, there are only 11 models that meet these criteria.
Since the combined descriptor models give the best results, it was decided to look at only these
models using the full neural network training procedure. The subset of 293 models was picked for

which the training set error is less than 3.1 and the test set error is less than 2.1. Incidentally, there

| Set | No. of Models | Minimum Error® | Maximum Error’ Mean®
Simple 359 1.83 6.65 3,66 +0.91
I[Chi 784 6.46 14.82 8.25 +0.97
CPSA 3,797 2.83 6.62 4.13+0.50
Combined 64,756 1.28 12.00 3,80 + 0.92

are no models using only the simple descriptors that meet these criteria.

3.6 Set of 293 Experiments. For each of the 293 models, 200 neural networks are trained with
200 different initial weight values. These 200 neural networks are ranked according to the training
set error, and a list of the top 40 neural networks is created. This list of 40 neural networks is then

ranked according to the monitoring set error, and the top neural network is selected as the neural
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network to use for that particular model. The top five neural networks are used to generate some

statistics to study the success of the neural network selection procedure.

Table 5 lists some statistics for the set of 293 models based on the top neural networks. The
second column contains the mean of the errors for each of the 293 models along with the standard
deviation, where the error for each model is the error for the neural network that was selected as the
best neural network. The third column contains the error for the model that has the minimum error,
and the fourth column contains the error for the model that has the maximum error. The range of
errors for the training sets is relatively small and has a very small standard deviation. Therefore,
there is not much differentiation of the models based on this statistic. The range of errors for the
monitoring sets is much larger. It was found, however, that the differentiation of the models based
on the monitoring set errors is less than one would expect. There are 58 models with a monitoring
set error greater than 0.06. The average test set error associated with these 58 models is
1.894 + 0.303, with a minimum error of 1.189 and a maximum error of 2.561. These values are
essentially the same as the values for the entire set of 293 models. One weak relationship of the
monitoring set error was noted with the test set error. If the monitoring set error is significantly
greater than the training set error, then the probability is somewhat higher that the model will have
a high test set error rather than a low test set error. There are 38 models for which the monitoring
set error is greater than the training set error by at least 0.02. The average test set error for these
38 models is 1.925 + 0.321, with a minimum error of 1.189 and a maximum error of 2.561. This
average is a slightly higher average error than the average test set error for all 293 models. This
trend makes sense since a higher monitoring set error than training set error indicates that a model

that has been overtrained and will consequently give poor test resuits.

The distribution of the models based on the training set and test set errors is illustrated in
Table 6. The first column contains the number of models that meet the error cutoffs in columns 2
and 3. One trend that was noticed is that, when the training set error is very low, the test set error
is not at the lowest end of the test set errors. Of the 14 models that have a training set error less than

- 2.6, only 3 have a test set error less than 1.8. The average test set error for this group of 14 models



Table S. Results for the Top Neural Networks of the 293 Models

| Data Set _ | MeaELErrora l Minimum Erro-r?— h@_)_(imum Error®
Training Set, Scaled 0.048 + 0.004 0.032 T 0.056 |
Monitoring Set, Scaled 0.043 +£0.020 0.012 0.125
Training Set 2.828 £0.126 2.364 3.079

Test Set 1.870 £ 0.308 1.141 2.745 II

& Mean of the errors associated with the 293 models.
b Error for the model with the minimum error.

C N .
Error for the model with the maximum error.

Table 6. Distribution of the 293 Models Based on Test Set and Training Set Errors for the
Top Neural Networks

268 <3.0 — '
119 <2.8 — ‘
40 <2.7 —
14 <2.6 —
275 — <2.4 "
251 — <22
201 — <2.0 ;i
117 —_ <1.8 |
55 —_ <1.6
19 — <1.4
191 <3.0 <2.0
115 <2.9 <1.9 i
57 <2.8 <1.8 7
13 <2.7 <17 |

is 2.075 £ 0.304, with a minimum of 1.665 and a maximum of 2.561. It is interesting to note that
9 of the 14 models have monitoring set errors that are greater than the training set errors by at least
0.02. The explanation for this trend is that models with very low training set errors carry the risk that
the model has been overtrained. Another trend that was noticed is that, when the training set error
is very high, the test set error is also often high. For the 25 models with a training set error greater

than 3.0, the average test set error is 2.098 £ 0.276, with a minimum of 1.592 and a maximum of
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2.745. Of the 25 models, only 8 have a test set error less than 1.95. For these models with high
training set errors, it appears that the model developed is simply not good enough to give good test

set errors.

The trends associated with the distribution of test set errors are not as clear. Table 7 shows the
average errors associated with the set of 55 models for which the test set errors are less than 1.6, the
set of 92 models for which the test set errors are greater than 2.0, and the set of all 293 models. One
can see a small correlation with the monitoring set and the training set for models with a small test
set error. There is even less of a correlation for the models with a large test set error. Why is there
not a more clear-cut relationship between the test set error and the training and monitoring set errors?
It is believed that the major problem is that the models being developed are too general and,
therefore, the members of the training, monitoring, and test sets do not cover the data space evenly
and completely. Because of this, the test set and monitoring set are not as representative of the

training set as they should be.

Table 7. Means of the Errors for the Top Neural Networks for the 293 Models

| _Data Set | Test Set Error <1.6 | Test Set Error >2.0 I All Models |

Training Set 0.047 £+ 0.003 0.048 + 0.004 0.048 + 0.004
Monitoring Set 0.036 £ 0.014 0.046 + 0.021 0.043 +0.020
Training Set 2.757 £0.105 2.851 £0.143 2.829 £0.126
Test Set 1.446 £ 0.096 | 2.223+0.163 1.870 £ 0.308

3.7 Selection of the Top Neural Network. All of the training, monitoring, and test set errors
reported in the previous section are for the top neural network of the 200 neural networks calculated
for each model. There is a problem with the method used to select the top neural network. The
problem is not so much with the algorithm but with the less-than-perfect correlation of the test set
errors with the monitoring set and training set errors. As discussed in the previous section, the root
of this problem appears to be the fact that the models being developed are too general. There are
many cases in which two of the top five neural networks for a given model have the same training

set error and monitoring set error but widely different test set errors. In some cases, the test set error
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for the top neural network differs from the test set error for the next-best neural network by as much
as 0.8. The selection algorithm is not a total failure, however. Table 8 lists some statistics for the
293 models for both the test set and the training set. The second column is the mean error of the top
neural networks for the 293 models. The third column is a mean of the 293 values of the mean error
of all 200 neural networks, and the fourth column gives the mean of the 293' values of standard
deviation associated with each of the 293 means of the 200 neural networks. Columns 5 and 6 give
analogous values for the means of the top five neural networks for each of the 293 models. One can
see that errors associated with the top neural networks are smaller than the errors associated with the
means of all 200 neural networks by approximately 0.2 for the training set. Only three of the models
have a mean training set error smaller than the error for the top neural network. The errors
associated with the top neural networks are better than the errors associated with the mean of the 200
neural networks for the test sets by approximately 0.12. There are, however, 88 of the 293 models
that have a mean test set error better than the error associated with the top neural network. The error
associated with the top neural network is approximately the same as the error associated with the
mean of the top five neural networks for the training set. The standard deviations associated with
the mean of the top five neural networks is very small, and, thus, for the training sets, which are the
most diverse sets, one can see that the algorithm does a very good job of selecting the best neural
networks. The standard deviation for the mean of the top five neural networks for the test set is
much larger, and one can thus see the degree of randomness associated with the test set error in the
selection of the top neural network. The standard deviation is, however, only half as large for the
top five neural networks as for the set of all 200 neural networks. The fact that the mean test set
error associated with the top neural network is less than the mean test set error of the mean of all 200
neural networks shows that the algorithm does pick a model with a low test set error more often than
it picks a model with a high test set error. Thus, the training set errors and monitoring set errors are
useful tools for selecting the best neural network from a large set of neural networks, even though

the test sets in this work are less-than-perfect representations of the training sets.

3.8 Selection of the Best Model. The question remains as to which of the 293 models is the
best. The majority of these models are very good. Whereas, none of the models developed using

only the simple descriptors have a training set error less than 3.0 and a test set error less than 2.0,
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Table 8. Best Neural Networks vs. Mean of All Neural Networks

Neural Network Mean Error

Data Set Best | Means of 200 |Standard Deviations| Means of | Standard Deviations
| of 200 _| Top Five of Top Five
[Training Set | 2.828 3,031 0205 | 2.833 0.060
TestSet | 1.870 1.991 0.290 1.879 0.195 |

191 of the models developed using the combined descriptors do. The fluctuation of the test set error
“makes it difficult to select one model as the best. In addition, one must decide which criterion is
more important—the test set error or the training set error. Table 9 lists the 11 models that have a
training set error less than 2.7 and a test set error less than 1.6 . Model 8 has been selected to study
in more detail, since this model has the smallest test set error and the smallest training set root-mean-
square (RMS) error. This model uses 11 descriptors (descriptors 1, 5, 6, 12, 16, 25, 27, 33, 40, 42,
and 46). Figure 8 is a plot of the actual vs. predicted values for the dielectric constant for each of
the compounds in the training, monitoring, and test sets. The compounds in these three sets are
marked by open circles, open triangles, and filled squares, respectively. A line with a slope of 1 has
been drawn through the plot to illustrate where the points should fall. The means of the absolute
values of the errors for the training set, the test set, the monitoring set, and the set _of all 497
compounds are 2.67, 1.28, 2.94, and 2.42, respectively. Three of the compounds have actual
dielectric constant values very close to 1.0 and are compounds whose dielectric constants were
measured in the gas phase. These compounds were inadvertently allowed into the data set, which
should only consist of compounds whose dielectric constants were measured in the condensed phase.
Eleven of the compounds have absolute errors greater than 10.0, while 64 of the compounds have
absolute errors greater than 5.0. A total of 294 compounds has absolute errors less than or equal to
2.0, and 178 compounds have absolute errors less than or equal to 1.0. The compounds with the
largest absolute errors represent a variety of functional groups with no one functional group being
predominant, although 3 of the 15 worst compounds are amides. There are 37 compounds with
relative errors greater than 100%. Of these, only three have dielectric constants greater than 4.0.
There are 115 compounds with relative errors greater than 50%, of which only 15 have dielectric

constants greater than 10.0.



Table 9. Eleven Models With Training Set Error <2.7 and Test Set Error <1.6

hModel “Training Set | Monitoring | Training Set | Test Set | Training Set |Test Set Error
Error® Set Error® Error® Error® Error (RMS)

|| = — (R=MS) =

[ 0.043 0.027 2.69 1.45 3.95 2.99
2 0.044 0.075 2.64 1.53 3.90 2.21

I 3 0.047 0.026 2.66 1.38 4.14 2.17
4 0.047 0.045 2.66 1.48 4.12 2.32

' 5 0.040 0.063 2.68 1.54 3.83 2.97
6 0.047 - 0.031 2.68 1.49 4.12 2.50
7 0.044 0.053 2.68 1.53 4.00 2.07
8 0.041 0.057 2.67 1.28 3.77 2.33
9 0.041 0.036 2.63 1.35 3.87 2.26
10 0.044 0.040 2.64 1.53 4.00 2.59
11 | 0.045 0.031 2.68 1.47 4.06 2.47

# Mean squared error based on scaled dielectric values.
® Mean of the absolute values of the errors.

3.9 Analysis of the Top Descriptors. An analysis was made of the descriptors used in the
191 models for which the training set error is less than 3.0 and the test set error is less than 2.0.
Table 10 lists the descriptors and the number of models thai use each descriptor. The most useful
descriptor is the dipole moment, and this comes as no surprise, given the prominence of the dipole
moment in various theoretical equations related to the dielectric constant. The relative unimportance
of the polarizability is somewhat surprising. The next-most-important descriptor tells the model
whether a given compound can have hydrogen bonding. Since compounds with hydrogen bonding
have exceptionally large dielectric constants, this occurrence also makes sense. The count of the
number of nitrogens and oxygens follow. These descriptors signal the occurrence of important
functional groups such as alcohols, amines, and amides. The next two descriptors are CPSA
descriptors. The remaining descriptors have significantly lower occurrences. Although the most
frequently used molecular connectivity descriptor occurs in orﬂy 91 models, 161 of the 191 models
contain at least one molecular connectivity descriptor. Thus, the molecular connectivity descriptors

are useful when used in addition to the simple descriptors and the CPSA descriptors.
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Table 10. Frequency of Descriptor Usage for 191 Models

yo— —
—

Of the 191 models, the model with the least number of descriptors has 6 descriptors and the
model with the largest number of descriptors has 12 descriptors. The count of the number of models
with 6 descriptors through the count of the number of models with 12 descriptors is 2, 21, 52, 51,
43, 16, and 6, respectively. Apparently models with greater than 12 descriptors tend to be over fitted
and models with less than 6 descriptors do not have sufficient information to describe the

relationship between molecular structure (as described by the descriptors) and dielectric constant.

4. Conclusion

The work presented in this report explores the success of a large number of models in calculating
dielectric constants for a very wide range of compounds. A total of 191 models has been found, with

a training set error of less than 3.0 and a test set error of less than 2.0. One of these models has been

Descriptor No. Descriptor No. of Occurrences
1 Dipole Moment 191
12 Hydrogen Bond 190
6 Count of Nitrogens 188
5 Count of Oxygens 175
33 CPSA 152
27 CPSA 151
16 CPSA 95
25 CPSA 93
3 Count of Carbons 92
40 Chi 89
22 CPSA 85
42 Chi 58
2 Polarizability 44
46 Chi 43
59 Chi 38
62 Chi 28

47




explored in detail in Figure 8. While there are a number of outliers, many of the compounds have
accurately predicted dielectric constants. For the test set, 86% of the compounds have an absolute
error of less than 2.0. The molecular connectivity descriptors and the charged partial surface area
descriptors were found to be essential for the quality of models obtained. The use of other classes

~of descriptors, as described in section 3.1, might bring further improvements.

Several factors, such as the fluctuation of test set errors in Table 8 and the number of outliers in
Figure 8, suggest that the models being developed cover too wide of a range of structures. The next
logical step for this research is to divide the set of 497 compounds into smaller sets of similar
structures. Several smaller models that span their respective data spaces evenly would likely give
more accurate results than the current global models presented in this paper. One simple method for
creating smaller models is to use sets of compounds with one specific functional group. In some
earlier unpublished work, a model was built for alcohols with dielectric constants ranging from 3 to
39. The error for the test set for this model was 60% smaller than the error for the test set for a

model developed for a general set of compounds that had a similar dielectric constant range.

The experiments performed in this research would have been impossible without the excellent
computer facilities available. The training of each neural network required 3040 s, with a total of
approximately 700,000 neural networks being trained. These computations allowed for a full
exploration of the set of 16 descriptors. It would be interesting to use a global optimization
technique such a simulated annealing or genetic algorithms for the selection of descriptors to see if
these techniques find the same models that the full exploration found. The exploration of many

more descriptors than 16 would require the use of some such global optimization technique.
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Appendix A:

Algorithm for the Detection of Structural Fragments
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The software uses a recursive algorithm that searches the connection table. Each heavy atom in
the molecule is viewed as the root in a tree structure, and all directions are searched to some
predefined level to find all paths of each possible length. The main routine (main) calls another
routine (search) for each heavy atom in the structure. The row corresponding to the heavy atom is
passed along to search. In search, the row is searched for each occurrence of a / which indicates
a connection. For a given connection, the row corresponding to that connection, the connected atom,
is loaded info a temporary array and passed to a recursive call of search. That row is then searched
for any connections it might have. If a connected atom is already in the path, that atom is not
searched again. This test ensures that a path does not double-back on itself and also prohibits the
presence of rings in a path. (Rings are found via a separate procedure after all paths of a given length
have been found.) The depth of recursion is equal to the path length and is used to end the recursion
when a path of the appropriate length has been found. Before adding a path to the list of paths, a
check is performed to see if that path is already in the list.

After all paths of a specific length have been found, tests are conducted in main to see if a
cluster, star, or ring can be formed from each of the given paths. The first test, which is performed,
is the search for rings. Every nonhydrogen atom that is attached to the first atom in a path is
examined to see if it is the last atom in the given path. If so, a ring has been found and is added to
the list of rings after checking to see that that ring has not already been found. If a given path can
form a ring, it is removed from the list of paths. The entire path is then searched using the same
procedure for each atom in the path to see if any rings of a smaller size are present. These rings are
not added to the ring list, but the corresponding paths are removed from the list of paths. The
remaining reduced set of paths is then used for the cluster and star searches. The cluster search
proceeds by examining each atom in a given path from the second atom to the second-to-last atom.
If a heavy atom, which is not in the path, is attached to a given atom in the path, a cluster has been
found. The star search is the same, except that two heavy atoms that are not in the path must be
found. A check of the list of clusters is conducted to determine if a given cluster has already been

found. In addition, the cluster is examined to make sure that the addition of the extra atom has not
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resulted in the formation of a ring. Analogous procedures are followed for the addition of a potential

star to the list of stars.

These procedures were tested on benzoyl chloride (a ring), B-pinene (a bicyclic), and
cis-decahydrohapthalene (a fused ring). The rings were correctly found. A large number of the
paths, clusters, and stars were also examined to make sure that they were found correctly. An added
benefit of these subroutines is that they could be used to find all the rings in a given molecule.
Simply write a program that calls search for each desired path length. Save the rings, which are

found for each call, and disregard the paths, clusters, and stars.
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Appendix B:

Determination of Surface Area for Charged Partial Surface
Area (CPSA) Descriptors
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A molecule is composed of atoms that are assumed to be spherical with radii equal to the van der
Waals radius of each particular atom type. Table B-1 lists the van der Waals radii as taken from a
paper by Jurs.! The surface area of an atom is simply the surface area of the sphere associated with
that atom, which is not included in the volume of any other atom in the molecule. Another definition
of surface area, which can be used in the calculation of the charged partial surface area (CPSA)
descriptors, is the solvent accessible surface area. This is the surface area, which is calculated, if the
radius of each atom is taken as its van der Waals radius plus the radius of a particular solvent
molecule. Some good illustrations of these definitions are given in an article by Pearlman.”> The
calculation of the surfacé area associated with a given atom, requires the traversal of a number of
evenly distributed points on the surface of the van der Waals sphere associated with that atom. A
calculation is made to determine if that point falls within the van der Waals radius of any other atom
in the molecule. A ratio is determined for the sum of all the points that do not fall within the van der
Waals radius of any other atom in the molecule to the total number of points traversed on the sphere,
and the surface area is simply the multiplication of this ratio by the surface area of the sphere
associated with that atom. The total surface area of the molecule is simply the sum of all the partial

surface areas associated with each atom in the molecule and is illustrated in the following equation:

S=2(—-——-—PO’”’S" ]4nr,-2, 1)

i=1\ POINtS;,y

where S is the total surface area, n is the number of heavy atoms in the molecule, points, is the

number of points on the surface for a given atom, points,__, isa the total number of points for that

towal

atom, and 7, is the radius associated with that atom.

The points to traverse for a given atom are calculated in the following manner. The sphere is

intersected by a number of levels cutting through the z axis. The intersection is a circle in the x-y

! Rohrbaugh, R., and P. Jurs. “Descriptions of Molecular Shape Applied in Studies of Structure/Activity and
Structure/Property Relationships.” Analytical Chimica Acta, vol. 199, pp. 99-109, 1987.

? Peariman, R. S. “Molecular Surface Areas and Volumes and Their Use in Structure/Activity Relationships.” Physical
Chemical Properties of Drugs, chap. 10, edited by S. H. Yalkowksy, A. A. Sinkula, and S. C. Valvani, New York:
Marcel Dekker, 1980.
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Table B-1. Van der Waals Radii as Used for the Determination of Surface Area

Atom Type van der Waals Radius
| &
Hydrogen 1.20
Chlorine (sp’ or sp®) 1.70
Carbon (sp or aromatic) 1.77
Oxygen (singly bonded) 1.52
Oxygen (doubly bonded) 1.50
I Nitrogen (sp® or sp?) 1.55
Nitrogen (sp or aromatic) 1.60
Sulfur 1.80
Fluorine 1.50
Chlorine 1.75
Bromine 1.85
Iodine 1.97 I

plane, and a given number of points are visited for each circle beginning with the intersecting plane

at the top of the sphere (one point) and ending with the intersecting plane at the bottom of the sphere

(one point). The first circle (second intersecting plane) has four points, and each additional plane

has an additional four points until the center of the sphere is reached. The center has the maximum

number of points, and the number of points per circle is then decreased until the final plane (which

has only one point) is reached. Thus, the total number of points traversed depends on the number

of levels selected to intersect a given sphere. The number of points per circle and the number of

levels per sphere are both related to the number of degrees by which each point is separated, as

llustrated in Table B-2.

Table B-2. Determination of the Number of Points per Sphere

Degrees 90 45 225 | 11.25 9 7.5 6

| Max Points per Circle 4 8 16 32 40 48 60
Number of Levels 3 5 9 17 21 25 31
Total Points 6 18 66 258 402 | 578 902
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The beginning point of a circle is taken at an angle of 90° for y and 0° for x. The x value for a
given point is circle_radius*sin(x) + x(center of atom), and the y value for that same point is
circle_radius*sin(y) + y(center of atom). The points on the circle in the center of the sphere are
assigned a value for z, which is simply the value of z from the coordinates of the molecular structure.
A given value is added to or subtracted from this value for the remaining levels in the sphere, since

each level is separated by a given distance determined by the number of levels used.

The algorithms described were implemented and tested with the number of degrees set to 7.5.
One of Jur’s papers discusses a new methodology for calculating surface areas and volumes and
compares the results to the Pearlman method for a set of 22 compounds.” Seven of these compounds
were found in this database, and these compounds were used as a test set to compare our method to
the method of Pearlman. Near-perfect agreement was found for five of the seven compounds. The
remaining two, napthalene and p-xylene, gave a 25% and 20% difference, respectively. It could be

that this difference is simply a reflection of different three-dimensional (3-D) coordinates.

3 Stouch, T., and P. Jurs. “A Simple Method for the Representation, Quantification, and Comparison of the Volumes
and Shapes of Chemical Compounds.” Journal of Chemical Infrared Computational Science, vol. 26, pp. 4-12, 1986.
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be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,
technical content, format, etc.) :

Organization

CURRENT  Name E-mail Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old
or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)



